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LETTER TO THE EDITOR 

New exact exponents for two-dimensional self-avoiding walks 

H Saleur 
Service de Physique Theorique, CEN-Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 26 June 1986 

Abstract. We establish, using standard Coulomb gas methods, the values of a new set of 
geometrical exponents that we have previously conjectured. These exponents give, for any 
p ,  the number of configurations of p two-dimensional self-avoiding walks of the same 
length I which are attached by their ends: 

~ P l / ( z o - 9 P ~ l l 3 2 - ~  p -  I I 
u p /  - 

In an earlier paper (Saleur 1986, hereafter referred to as I) we have introduced new 
exponents yp  for the two-dimensional self-avoiding walk (SAW) problem. If wpr is the 
number of configurations per lattice site for p non-intersecting SAW each of length 1 
which are attached by their extremities (figure 1) we have defined yp by 

U p ,  - p q w  /+CC (1) 
where p is the connectivity constant of the lattice. (For p large, the walks cannot start 
at the same point but their extremities are tied together in a fixed neighbourhood.) 
The values of y ,  and y 2  are already known: y ,  = y = 3 and y2 = 1 - 2 v = -5. In order 
to determine yp  for all p ,  we have considered operators bp which appear as composite 
operators in the n = 0 vector model (de Gennes 1979) and whose correlation function 
is 

where the Y$, are graphs formed by p SAW of total length 1 connecting points R and 
R’.  The critical point of the n = 0 vector model is Pc = p- ’ .  At this value, (2) decays 
algebraically: 

1 

P 

Figure 1. The ‘watermelon’ graph formed by p polymers attached by their ends. On a 
lattice, the polymers cannot start at the same point with no other intersection if p is large 
enough. In this case their extremities must be tied together in a fixed neighbourhood. This 
does not change the y p .  
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Using several arguments of conformal invariance (see Belavin et a1 (1984) and referen- 
ces therein) and transfer matrix calculations (Cardy 1984) we have been led in I to 
conjecture the expression of xp in 2 ~ :  

9p2-4 
xp =- v p 3 1  

48 
(4) 

generalising the known values x1 = LJH = 
deduced, by inversing the Laplace transform in (2), 

and x2 = 9T = 3. From (4) we have then 

20 - 9p2 
yp-l=-- (P-1) .  32 

In a series of recent papers, Duplantier (1986) has used these yp to predict several 
other results, like, for instance, the exponents for star polymers (Lipson et al 1985) 
or the contact exponents (Redner 1980), and found them to be in good agreement 
with numerical calculations. He has also calculated y p  in the E = 4 - d expansion, 
obtaining for E = 2 a formula close to (5). 

In this letter we would like to point out that the xp can also be obtained in a more 
direct way using Coulomb gas arguments (Josi et a1 1977) similar to those developed 
by Nienhuis (1982, 1984). For clarity we shall first recall briefly some important points 
of these arguments concerning the O( n) model (see Nienhuis (1982,1984) for details). 

The starting point is a generalised O ( n )  model on the honeycomb lattice with the 
partition function 

where s is a n-component classical spin with (SI' = n and dn(n)  is the normalised 
n-dimensional angular measure. Using a high temperature expansion, (6) can be 
rewritten as 

Zqn) = 2 nrp' (9J (7) 
'9, 

where the 9Ir are graphs formed by r non-intersecting self-avoiding rings of total length 
1 (if n = 0 these rings are forbidden and one recovers the SAW problem). One can show 
that &(,,, is also the partition function of a solid-on-solid model on the dual triangular 
lattice (TSOS model). The heights are variable 8 multiples of n. Two adjacent 8 can 
differ by 0, * n  and the weights are defined by considering triangles of three adjacent 
8. If these are equal the weight of the triangle is 1 ;  if one is larger than the two others 
the weight is fi  exp(iu) and if one is smallerthan the two others the weight is p exp(-iu). 
By considering the polygons in (7) as walls between regions of equal 0 one gets 
&(,,, = provided n = 2 cos 6u. Finally the TSOS model can be transformed into 
a six-vertex model on the covering KagomC lattice and mapped onto a Coulomb gas. 
Nienhuis has deduced from this mapping the critical point &(n) of (7) and the 
exponents . Y H ( n ) ,  9T(n). These can be found in the original paper and we simply 
recall here the value of the renormalised coupling constant g at criticality: 

n = -2 cos .ng g E Cl, 21. (8) 
We now introduce a generalisation of (2): 
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where the %p,r are graphs formed by p SAW connecting R to R'  plus r self-avoiding 
rings (figure 2). At the critical temperature B c ( n )  

( 4p( R)c$,( R ' ) )  - I R - R ' I - 2 x p ( " )  (10) 
and the xp in (4) correspond to the case n = O .  For calculating x p ( n )  we generalise 
the original determination by Nienhuis (1982) of 9H(n) = x , ( n ) .  The basic idea is to 
consider the graphs %p+r as representing dislocations in the TSOS model with a vortex 
at one extremity and an antivortex at the other extremity. Since a walk represents a 
wall of step v, the magnetic charge of these vertices is m = kip. However the weights 
in the TSOS model associate a certain energy to the curvature of the walks so (9) is 
not exactly a vortex-antivortex correlation function. The main difference is that two 
walks of the same length have weights which differ by exp( *6iu) for each turn around 
one of the endpoints. This can be compensated by adding to each vortex a spin wave 
exp[ - (6iu/ r)e] corresponding to an electric charge e = -6u/ v = 1 - g. Suppose now 
there is a ring surrounding both endpoints. If its interior is raised (lowered) by v, it 
has a factor exp(6iu) (exp(-6iu)). The two spin waves change those factors in 
exp(-6iu) (exp(6iu)) so the total weight is left invariant. Except for some global 
phase factors, (9) is thus the correlation function of a combination of a vortex and a 
spin wave operator. By using the known renormalisation equations for fugacities of 
electric and magnetic charges (JosC et al 1977, Nienhuis 1982, 1984) one gets the 
dimension 

g 1 
2 2g 

xp ( n ) = - m - - e2 

or 

x p ( n ) = - g  2 ( 2 r  2 --(g-1)2. 2lg 

If n = 0, g = 3 (8) and thus 

9p2 - 4 
X p ( O )  = xp = - 

48 

in agreement with (4). Note that x2( n )  = &(n) only for n = 0. Using the same method 
as in I we have checked ( 1 1 )  for general values of n using transfer matrix calculations. 
Our study thus confirms the conjecture (4) and gives a simple generalisation. 

Figure 2. A typical graph of formula (9) with r = 1 ,  p = 3 (bold lines are polymer links). 
In the TSOS language, it corresponds to a dislocation with a vortex at one extremity (say 
R) and an antivortex at the other one (R'). The magnetic charge of these vertices is m = *$. 
Thus, by describing a closed path around one extremity, the height varies by *2mn: 
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In conclusion we should remark that (1 1) is a Kac (1979) formula in the conformal 
invariant theory of the O( n) model (Dotsenko and Fateev 1984). Let us consider, for 
instance, the case n = 1 which has a central charge C =; (Belavin er a1 1984). The 
conformal dimensions of the primary operators in the degenerate representations are 

(3s -4t)’- 1 
48 h , ,  = 

with s, t integers 3 1. It is then easy to identify the xp( 1) as two series (13): x Z p r - , ( l )  = 
2h2,p.+,  and xZp,(l) = 2h,,p.+, ( p ’ z  1). Except forx,( l )  = 2h2,2 = j H ( l ) ,  these dimensions 
are outside the minimal block s S 3, t s 2 (Belavin et a1 1984). One can make a similar 
identification for other values of n. This thus provides a physical interpretation for 
some lines of the conformal grid in the O(n) models. 

We thank B Duplantier for several interesting discussions. 
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